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Figure 5b-Addition of puromycin. Effect of genkwadaphnin and 
yuanhuacine on the methionyl puromycin reaction of P-388 lyrnphocytic 
leukemia lysate (n = 5). Key: (e) control plus puromycin; (A) genk- 
wadaphnin; (m) yuanhuacine plus puromycin. 

[3H]methionine from the 80 S complex (Fig. 5b). The diterpene esters 
did not interfere with the formation of a stable 80 S initiation complex 
but rather inhibited the puromycin release of labeled methionine from 
the polysome. 

These data indicate that I and I1 similarly block peptide bond forma- 
tion during elongation peptide chain synthesis. The concentration of drug 
to block peptide transferase activity was consistent with concentrations 
required to inhibit whole cell protein synthesis in uitro. 

The daphnane diterpene esters did not have any significant effects on 
the individual steps leading to the formation of a stable 80 S initiation 
complex. The daphnane diterpene esters significantly inhibited both the 
polyuridine-directed polyphenylalanine synthesis and the formation of 
the first peptide bond between puromycin and the met-tRNA bound to 
the 80 S initiation complex. These data strongly indicate that the diter- 
pene esters are potent inhibitors of the peptidyl transferase reaction of 
the elongation process of protein synthesis of P-388 lymphocytic leukemia 
cells. 
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Abstract 0 One may attempt to individualize drug dosage by estimating 
an individual's pharmacokinetic parameters. Information useful for this 
purpose consists of certain population pharmacokinetic parameters 
(notably those describing the typical relationship between dosage and 
drug concentrations) and also measured drug concentrations from the 
individual of concern. Both types of information should be used. A 
(Bayesian) method that does so has been described in the pharmacoki- 
netic literature. In this report an implementation of the Bayesian method 
that is readily adapted to a microcomputer is presented. Using simulated 
data it is compared with two other methods proposed by others, for es- 
timating individual theophylline clearances. Both previously suggested 

A great deal of attention has been given to the problem 
of estimating the pharmacokinetic parameters of indi- 
vidual patients in order to optimize dosage choices. Ini- 
tially, most attention has been directed a t  obtaining esti- 
mates of individual parameters from the population in- 
formation relating kinetics to certain patient features (sex, 

methods are shown to be less precise than the Bayesian method: their 
typical error magnitudes are 20-70% larger. 

Keyphrases 0 Bayesian method-individualization of pharmacoki- 
netics, simple implementation and comparison with non-Bayesian 
methods, theophylline o Pharmacokinetics-Bayesian individualization, 
simple implementation and comparison with non-Bayesian methods, 
theophylline 0 Theophylline-Bayesian individualikation of pharma- 
cokinetics, simple implementation and comparison with non-Bayesian 
methods 

age, renal function, e t c ) .  More recently, considerable at- 
tention has been directed a t  the estimation of parameters 
using measured drug levels (1-4). 

One particular method, the Bayesian method (3), is 
intuitively appealing. It involves a continuously changing 
view of the patient. Before any drug levels are measured, 
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the patient is regarded as a typical member of the popu- 
lation of all similar patients with respect to pharmacoki- 
netic parameter values. Once considerable drug level in- 
formation has become available, the patient is regarded 
as a unique individual whose pharmacokinetic parameters 
are distinct from other patients. The point of view is con- 
tinuously shifted from the first one to the second one as 
drug level information accumulates. 

In this report, a method for implementing the Bayesian 
approach is outlined that involves only a simple modifi- 
cation of any standard nonlinear least-squares fitting 
procedure (see Appendix) .  Then, using simulated data, 
the Bayesian method is compared with two other methods 
for estimating individual theophylline clearances. 

THEORETICAL 

Implementation-The basic model used here for the observations 

yi = f ( p , X i )  + ci (Eq. 1) 

where yi is the i th drug level, P = (p~,p ' , .  . .ps) is the vector of the s 
pharmacokinetic parameters of the model for the individual, X, is the 
vector of independent variables (such as time, dose) associated with yc, 
and t i  is statistical error that  includes measurement error and random 
intraindividual kinetic variability over time. 

The errors, t , ,  are assumed to be independent, with zero mean and 
common variance, u2, assumed known. The vector of individual param- 
eters, P, is regarded as arising randomly from a population of such vectors 
(one for each individual of the population). For each 1 5 k I s, the pop- 
ulation mean and variance of the P k  are the known quantities, 0 k  and & 
respectively. They are obtained presumably from a population study of 
the drug in question. The assumption allowing for the simplicity of the 
implementation to be described is that the P k  are pairwise uncorrelated 
in the population. For convenience, 0 will denote the vector (01,02, . . dS)  
and Q will denote the vector (US&?, . . .a:). 

When faced with y t ,  i = 1, n observations of drug levels, the usual ap- 
proach is to estimate P using ordinary least squares (OLS). The ordinary 
least-squares estimate of P,  POLS, is that value of P minimizing the or- 
dinary least-squares objective function: 

of an individual is: 

i= l  
(Eq. 2) 

where 

$1 = / ( P A )  (Eq. 3) 

We shall call the 9, prediction functions. 
The ordinary least-squares estimate minimizes the squared errors 

between the observations and the prediction functions. Call these squared 
errors of the first kind. 

If the only observations available for estimating P were those of y l ,  
POLS would be a natural estimate. However, there are other available 
observations-the elements of 0, obtained from the population study of 
the drug. Define 9 = 0 - P to be the vector of differences between the 
population mean parameters (0) and each individual's parameters ( P ) .  
Then, for each k: 

0k = Pk V k  (Eq. 4) 

Just as Eq. 1 says that the drug level observations (y,) are equal to.pre- 
diction functions f ( P , X , ) ,  themselves functions of the unknown indi- 
vidual parameters ( P )  plus a random error ( 6 , )  with known variance (u'), 
so Eq. 4 says that the population observations (8k) are equal to prediction 
functions ( p k )  trivial functions of P, plus a random error ( ~ k )  with known 
variance ( w i ) .  Therefore, the estimate of P should attempt to minimize 
the squared errors between these population observations and their 
prediction functions, as well as those of the first kind. 

When faced with observations having different error variances, it is 
customary to estimate parameters using weighted least-squares (WLS). 
The weighted least squares estimate of P , ~ w L s ,  is that value of P mini- 
mizing 

Statistical theory states that with different error variances, weighted 
least-squares estimates are more efficient (and possibly less biased) than 
ordinary least-squares estimates. 

The same estimator (PWLS) can be as justified as a Bayesian estimator 
when a somewhat different line of argument is pursued (3). The authors 
prefer, therefore, to call the set of parameter values that minimize the 
expression (5) the Bayesian estimates. The weighted least-squares jus- 
tification, however, leads directly to a simple practical implementation 
of the method. The implementation requires only a slight modification 
of any standard nonlinear weighted least-squares fitting algorithm. The 
details are presented in the Appendix to this paper. The essence of the 
method is straightforward: the list of data ( y l ,  i = 1, n )  is lengthened to 
include the additional values of 01, . . 3,. The weights for y i ,  i = 1, n are 
set to 1/u2, and those for the additional s observations are set to 1/& k 
= 1, s. Finally, the user-supplied subroutine that computes and returns 
3, (required by all nonlinear least-squares programs) is modified to return 
the current estimate of Pk when called upon to predict the kth additional 
observation. 

A slight modification of the basic approach (see Appendix) deals with 
the special case of uncertain dosage. It may sometimes happen that there 
is uncertainty about the prior dose history (perhaps because the patient 
was an outpatient) but that  an initial drug level is available so that the 
dose history for all subsequent levels is known (perhaps because the pa- 
tient became an inpatient). I t  may then be preferable to initialize to the 
first level as suggested in a previous approach (l), to be discussed further 
in Examples. T o  accommodate this case in the Bayesian approach, a 
revised model is written that treats the true unknown initial level as an- 
other unknown parameter (p,+l) and predicts observations as a function 
of time and dosage only after that  level (see Examples). Logically, how- 
ever, the (measured) initial level may deviate from its true value (p,+l) 
as much as any other measured level deviates from its predicted value. 
To allow this, the variance of the error between the observed initial level 
and pS+l is given by uf+l = u'. 

Examples-Two examples of common clinical pharmacokinetic sit- 
uations, the estimation problem for each of which has been approached 
by other workers, are presented in detail here. The Bayesian method is 
compared with those other methods using simulated data. 

The following are some aspects common to both. The drug used for 
illustration in both cases is theophylline. The basic pharmacokinetic 
model for its disposition is the one-compartment model. This model, 
when used only for intravenous doses has two parameters, volume of 
distribution ( V d )  and clearance (Cl ) .  An initial level, if present in the 
model, constitutes a third parameter. A reparameterization is used; the 
new parameters are p1= log Vd,pz = log C1, and p3 = initial level. Logs 
of Vd and C1 are used because choosing a symmetrical population dis- 
tribution for them (e.g., the normal) imparts a skewed distribution to Vd 
and C1, which accords well with actual experience. 

The data used to test the various approaches were simulated. For each 
example, one hundred pairs of individual clearance (C1) and volume of 
distribution ( V d )  values were chosen a t  random. The parameters, p1 and 
p2 for each case, were chosen randomly from normal distributions with 
means of 81 = log (0.5 literskg), 02 = log (0.052 literskghr), respectively, 
(5,6). The standard deviation of the distribution of the log of a random 
quantity is approximately equal to the coefficient of variation of the 
quantity itself. The standard deviations (coefficients of variation of Vd 
and C1) used in simulatingp1 and p2 values were w1 = 32% for p1 and w2 
= 44% for p2 (6). Every choice of p1 and p2 gave rise to a choice of Vd and 
C1 by exponentiation. The simulated Vd and C1 values were substituted 
into pharmacokinetic equations to obtain simulated true drug levels. 
Random normally distributed errors (c) were then added to these true 
levels to arrive a t  simulated observed levels. The t were chosen to have 
mean zero and standard deviations equal to 1 mg/liter (corresponding 
to a coefficient of variation of 10% at a typical concentration of 10 mg/ 
liter). The random numbers needed for the simulations were obtained 
using standard methods (7.8). 

Two estimation methods are applied in each example: the Bayesian 
method and one of the alternative methods proposed by others and de- 
scribed below. In both examples only clearance is estimated. Each method 
is used to estimate the clearance of each of the 100 simulated patients, 
using whatever population parameters the method may entail and the 
simulated drug level(s). The Bayesian method proceeds by a numerically 
minimizing expression (5). On the other hand, the alternative methods 
estimate clearance from the available data using simple direct formulas. 
The estimate of clearance by any method is denoted el. 

The Bayesian method depends on population parameters (standard 
deviations, w1 and up) not used by the other methods. The Bayesian 
method naturally behaves best when it is provided with the standard 

Journal of Pharmaceutical Sciences I 1345 
Vol. 71, No. 12, December 1982 



Table I-Performance of Clearance Estimation Methods 

Mean Clearance Error ( G E M )  as Percent of Mean Clearance 
- wc1= wvd" Error Absolute Error 

Method U U Example 1 Example 2 Example 1 Example 2 

Alternative - - -5.77(5.8) -2.82(3.3) 37.1(4.5) 26.4(2.1) 
Bayesian 1 1 -1.02(3.0) -1.08(3.1) 22.2(2.0)b 21.7(2.2) 

312 1 -4.94(3.4) -3.77(3.0) 25.6(2.3) 23.1(2.1)b 
213 

1 
1 

1 
312 
213 

5.02i3.2j 
0.44(3.0) 

-0.76(3.0) 

2 .52i3.4 
-0.26(3.1) 
-1.56(3.1) 

23.7(2.21b 23.5i2.4; 
2 i . i i 2 . Z j b  
21.7(2.2) 

a Ratio of standard deviation of clearance (or V d )  to u used in the Bayesian method. All ratios are divided by the correct ratio so that a value of unity signifies that 
the correct ratio itself was used. * Mean absolute error of Bayesian method less than that of alternative (p  < 0.05). 

deviations actually used to simulate the data. To test its robustness, the 
Bayesian method was applied five times: once with the true (simulation) 
standard deviations, once with the ratio of w1 to u assumed to be 312 times 
its true value, once with the ratio assumed to be 213 times its true value, 
and once each for the same changes in the assumed ratio of w2 to u. 

T o  assess the absolute and relative performance of the estimation 
methods the differences may be examined between estimates of clear- 
ances and their true (simulation) values. For each estimation method, 
the mean error, defined as the mean of the differences between the true 
clearances and the estimated values, measures the bias of the method. 
The mean absolute error, defined as the mean of the absolute values of 
the errors, can be used to measure precision. The relative precision of two 
methods can be assessed using a paired t-test on the paired absolute er- 
rors (i.e., on the value of the absolute error of the first method minus that 
of the second method). If the mean difference is significantly greater than 
(less than) zero, the first method is less (more) precise than the second 
method. I t  remains only to explain how f ( P , X i )  is computed for the 
Bayesian method, and for the alternative methods, how €1 is computed. 
These definitions follow. 

Example 1-A method has been proposed (2) to estimate the main- 
tenance dose required to achieve a target plasma concentration of drug. 
This method uses the observation of a single drug level after a test dose 
of drug. Since the maintenance dose must be proportional to individual 
clearance, the proposal amounts to a method to estimate individual 
clearance from a single drug level measurement. The appropriate phar- 
macokinetic model for the single true drug level is: 

where the subscript i has been suppressed, d is the size of the test dose 
[according to the previous suggestion (2), taken to be 5 mg/kg], tl is the 
duration of the test infusion (0.5 hrs), t2 is the sampling time for the drug 
level (6 hr), and k is the ratio of C1 to Vd.  The simulated observed level, 
y ,  is equal to W plus a randomly chosen value for t. 

Using the relationship suggested previously (2), and adjusting its 
constants so that it estimates clearance, rather than maintenance dose, 
this method becomes: 

C1 = 0.266 exp(-0.311 Y )  (Eq. 7) 

Example 2-A method has been proposed (1) for estimating individual 
theophylline clearance using one drug level measured shortly after a 
maintenance infusion has begun (and perhaps shortly after a loading 
infusion has terminated) and another level measured some hours later. 
Two drug levels are used, but the first one is regarded as an initial level 
so that prior dosage may be regarded as unknown. Since both levels are 
assumed to be measured, errors in both of them must be simulated. Ac- 
cordingly, the appropriate pharmacokinetic model for the first true drug 
level is: 

where, for convenience, the initial loading dose, d (5.6 mg/kg), is assumed 
to be given by an infusion rapid enough so that its contribution to the level 
measured a t  time t 1 (2 hr later) may be predicted by a bolus-dose model; 
R is the maintenance infusion rate, set equal to 0.52 mg/kg/hr so as to 
result in a typical steady-state concentration of 10 mghiter; and k is 
Cl1 V d .  

The second true level is modeled as: 
R 
c1 / (P ,Xz )  = Wp = W1 exp(-ktp) t - [l - exp(-ktz)] (Eq. 9) 

where t 2  is the time a t  which y2 is sampled, measured as the time since 

t l .  This time is varied randomly from patient to patient according to a 
normal distribution with a mean of 5 hr, and a standard deviation of 2 
hr (but values <3 hr were discarded). These sampling times are in ac- 
cordance with previous suggestions (1) for sampling times. (Note that 
for the Bayesian method, the third parameter to be estimated is simply 
W1, the true first level.) The simulated observed levels, y1 and y2, are 
obtained from W1 and Wp by adding randomly chosen errors €1 and c p ,  
respectively. 

Clearance is predicted (1) from: 

2R e l  = ~ 

(Yl  t Y2) 
+ 2 ~ X P ( ~ I ) ( Y I  - ~ 2 )  

t2(Y1 t Y2) 
Note that a single population parameter, 81, is used here. 

(Eq. 10) 

RESULTS 

Both examples can be discussed together, since the results are quite 
similar. 

Table I presents the performance of the Bayesian and alternative es- 
timation methods for both examples. In Table I, the mean (estimation) 
error and absolute error for clearance, and their standard errors, are ex- 
pressed as percentages of the (approximate) population mean clearance, 
0.052 literhrlkg. The performance of the Bayesian method is shown for 
all five cases tested: the case in which the method was supplied with the 
correct ratios of the w's to u and the four cases in which incorrect ratios 
were used. None of the Bayesian performances nor those of the alternative 
methods exhibited substantial bias (i.e., mean errors were relatively small 
and in all cases were within two standard errors of zero). 

U 
w 
w 
$30 
Q 
U 
Q 

V 
w 
F 

y 20 

2 10 

2 rn 
a 0  

A L T E R N A T I V E  B A Y E S I A N  B A Y E S I A N  B A Y E S I I  
(C11) (CZ-) (Cl t )  

ESTIMATION METHOD 

Figure 1-The mean percent absolute error (true clearance minus 
predicted clearance expressed as a percent of the  population mean 
clearance) for predictions by the alternatiue methods and the Bayesian 
method are shown. Dark bars refer t o  example 1 .  Clear bars refer to  
example 2. Lines at tops o f  bars show the  955 confidence intervals for 
the mean percent absolute errors. Three performances for the Bayesian 
method are shown; the  center one (Cl -) corresponds t o  adjusting 
clearance i n  correct proportion t o  differences between observed and 
predicted leuels. T h e  performance marked C1J (C1 t) refers t o  clearance 
predictions made when adjusting clearance less (more) t h a n  appro- 
priate. T h e  absolute error o f  the  Bayesian method is significantly 
smaller ( p  < 0.05) t h a n  tha t  o f  the  alternatiue method for all but the 
clear bar, C1J case. 
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The results for precision (absolute error) are different. The precision 
of the Bayesian method estimates typically exceeded that of the alter- 
native method estimates. This was true whether or not the Bayesian 
method standard deviation ratios were correct or not, although some 
degradation of performance with incorrect ratios was seen. In the first 
example, the absolute errors of the alternative method were typically 
50-70% larger than those of the Bayesian method, while in the second 
they were 10-25% larger. 

Figure 1 illustrates the precision results of Table I. For the Bayesian 
method, the cases in which the ratio of w1 to u was incorrect are not 
shown, as the performances in those cases were little different from those 
in which the correct ratios were used (Table I). 

Figure 2 shows the predictions of the Bayesian and alternative methods 
for all 100 simulated points for both examples. 

DISCUSSION 

Various methods for revising estimates of individual pharmacokinetic 
parameters based on measured drug levels have been put forward. Most 
previously suggested methods for doing so can be criticized for not at- 
tempting to integrate already available information regarding population 
pharmacokinetic behavior with the information from the observed drug 
concentrations. A previous study (3) has pointed out that such behavior 
is not optimal, and has presented a general (Bayesian) framework that 
allows use of all available information a t  all times. 

In this paper the Bayesian method is seen as an example of weighted 
least-squares estimation. This leads directly to a simple implementation 
of the method involving only minor modifications to any standard non- 
linear weighted least-squares computer program (see Appendix). 

In this paper the Bayesian approach has been applied to simulated 
data, representing two dosage adjustment examples for which other in- 
vestigators have proposed alternative approaches. In both cases, the 
Bayesian method is superior to the alternative. Moreover, the former is 
relatively insensitive to major inaccuracies in some of the parameters it 
uses. This finding supports the suggestion (see Appendix) to use ap- 
proximate values for those parameters when their true values are in 
doubt. 

Regarding the simulations, one further point merits comment. The 
similarity of the magnitude of the errors for the Bayesian method in the 
first and second examples may, a t  first, seem surprising, since the first 
example uses only one measured level, while the second uses two. How- 
ever, i t  should be recalled that the first level in the second example es- 
sentially substitutes for knowledge of initial dosage so that all the drug 
level information, per se,  is actually confined to the second level. 

Regarding the generality of the Bayesian approach, the basic method 

can be extended to arbitrary dosage and blood sampling patterns (91, 
numbers of samples, and pharmacokinetic models (10). In contrast, most 
other estimation methods, including the alternative ones evaluated 
herein, apply only to specific models or dosage patterns. 

Regarding the theoretical advantages of the Bayesian approach, the 
most important one is its use of population information a t  all times. By 
using population information even when individual observations are 
available, the Bayesian method must perform better than methods that 
do not. Figure 2 illustrates this point. The clearance estimates from the 
Bayesian method seen there tend to err in the direction of the population 
mean (for true clearances less than the mean, Bayesian estimates tend 
to be high, and uice uersa), while those of the alternative methods do not 
demonstrate this tendency. Rather, they can be quite erratic and have 
large associated errors. See the off-scale points in Fig. 2A. Even when 
absolute error is modest, the nowBayesian estimates can be quite mis- 
leading. See the several instances in Fig. 2B where clearance is estimated 
by a previous method (1) to be at or near zero. The first example is an 
instance in which random error causes the observed levels to differ greatly 
from the corresponding true levels. The second occurs when the error, 
no matter what its magnitude, represents a large fraction of the true 
difference, which itself may be quite small. The non-Bayesian methods 
trust the observations implicitly, and will often magnify small differences 
from expectation in these so as to produce large estimation errors. In 
contrast, the Bayesian method discounts observations, the more so the 
more they are in conflict with (prior) parameter expectations. In some 
cases this conservatism will mean that a parameter truly different from 
expectation will be incorrectly regarded as closer to expected than it really 
is-at least until further drug levels are obtained. The incorrect dis- 
counting of truly unusual responses is more than compensated by the 
correct tendency to discount falsely unusual ones, Indeed, the Bayesian 
method is likely to perform well in precisely those circumstances in which 
other methods do not perform well: when observed drug levels actually 
provide little information about the parameters of interest. 

APPENDIX 

Implementation of the Bayesian method involves the use of suitable 
computer programs. The availability of a computer program that can 
perform parameter estimation using nonlinear weighted least squares 
is assumed'. Although large programs running on large machines are often 

~~ ~ ~ ~ 

A users manual and listings of computer programs that implement the above 
approach on a microcomputer are available The authors should be contacted for 
information on obtaining these items. 
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used for this purpose l e g ,  NONLIN ( l l ) ] ,  short programs that run on 
a microcomputer are also available (12). 

Nonlinear weighted least-squares programs usually require a t  least 
the following: ( a )  data, consisting of a series of observations, Z = 
(Zl,Zz,. . .ZN)  and corresponding weights, W = (W1,W2,. . . W N ) ;  ( b )  
a subroutine that for each Zi accepts as arguments a list of independent 
variable values ( X i )  and a list of current parameter estimates (P) ,  and 
produces as output, a prediction (2i) of Zi, as a function v ( P , X ; ) ]  of its 
arguments. Some programs are less sophisticated than others and restrict 
one to scalar X i ,  usually denoting time, ti. The following procedure for 
specifying ( a )  and ( b )  for a nonlinear weighted least-squares program 
is designed to function even with that restriction. These programs will 
also require other arguments, such as the maximum number of iterations 
allowed, the convergence criterion, etc. Specification of these is no dif- 
ferent for the current application than it is for the usual ones. 

It. is assumed that there are N observations of drug levels, and s 
pharmacokinetic parameters to be estimated (s + 1 estimates are needed 
when an initial level is used). Further, it is assumed for now that the 
vector of mean population parameters, 0, is known as is w1 through w, and 
9. 

Any nonlinear weighted least-squares program can be used to find the 
P minimizing expression (51, by fulfilling requirements ( a )  and ( b ) ,  as 
follows: 

( a )  The da-h: There are a total of N + s observations. For i = 1, . . . ,N, 
let Zi = y, and W ,  = l/u2. For i = N + 1, .  . . ,N + s, let Zi = 8 k  and W ,  
= l/wg, where k = i - n. 

( b )  The subroutine: Let one component of X i ,  Xli, say, be defined by 
xl,  = ti $ i  5 n and Xli = -(i  - N )  if i > N .  Then the subroutine should 
return Zi = f (P ,X i )  if X I ;  2 0, but it should return 2; = P k  where k = 
-XI ; ,  if Xa < 0. 

When the initial level idea is to be used, one does not regard the initial 
level as one of the N others. Rather, one modifies the data by adding 
observation number N + s + 1, corresponding to the new parameter, 
numbers + 1. Then for i = N + s + 1, Zi =yo, Wi = l /u2 and Xli = -(s + l ) ,  where yo is the measured value of the initial level. The subroutine 
need not be modified from its specification above. 

The sole remaining problem is that of obtaining values for the popu- 
lation parameters, uz, 8, and 01 through w,. Methods for analyzing patient 
data in order to estimate population parameters have previously been 
presented [e.g., (13)]. Many investigators have studied normal volunteers 
or selected patient populations and have published equations that predict 
average pharmacokinetic parameters as a function of body weight, renal 
function, and other factors. Recently, a compilation of such parameters 
for selected drugs has been assembled (14). 

Available information, however, is often of varying quality and com- 
pleteness. In particular, estimates of w1 through ws and g2 are least 
available, and, when available, least reliable. When this is the case, it is 
proposed not that the Bayesian method be abandoned, but that certain 
rules of thumb be used. For many pharmacokinetic parameters, a coef- 
ficient of variation, CVI, of interindividual variability that is on the order 

of 25-50% is not uncommon, with volume of distribution often at  the 
lower value and clearance a t  the upper (12). This variability is present 
after correcting for age, sex, renal function, and other observable patient 
features. A reasonable coefficient of variation, CV,, of y ,  given P, is often 
5-15%, since the c error includes not only assay error but model misspe- 
cification error and error due to intraindividual kinetic variability. To 
compute an estimate of w i  and u2, the only further information needed 
are the values of 8k and a typical value for y ,  a value in the therapeutic 
range; let the latter be denoted j .  Then, for example, for CV2 = lo%, u2 
= (0.1g)2, and for CVI  = 50%, w i  = (0.58k)2. 

I t  is the author’s experience that the Bayesian estimates are not too 
sensitive to the choices involved in this rule of thumb, while the ordinary 
least-squares estimates can be rather poor in comparison when sample 
size, N, is small. Of course when N < s, the ordinary least-squares esti- 
mates do not exist, whereas the Bayesian estimates do. 
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